A new method to quantify tau pathologies with (11)C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter.
نویسندگان
چکیده
BACKGROUND Quantitative in vivo imaging of tau pathologies potentially improves diagnostic accuracy of neurodegenerative tauopathies and would facilitate evaluation of disease-modifying drugs targeting tau lesions in these diseases. Tau pathology can be quantified by reference tissue models without arterial blood sampling when reference tissue devoid of target binding sites is available. The cerebellar cortex has been used as a reference region in analyses of tau positron emission tomography (PET) data in Alzheimer's disease (AD). However, in a significant subset of tauopathies such as progressive supranuclear palsy and corticobasal degeneration, tau accumulation may occur in diverse brain regions including the cerebellar cortex. This hampers selection of a distinctive reference region lacking binding sites for a tau PET ligand. The purpose of this study was to develop a new method to quantify specific binding of a PET radioligand, (11)C-PBB3, to tau deposits using reference voxels extracted from cortical gray matter, which have a low likelihood of containing tau accumulations. METHODS We reanalyzed (11)C-PBB3 PET data of seven mild AD patients (ADs) and seven elderly healthy control subjects (HCs) acquired in a previous study. As a standard method, parametric images of binding potential ([Formula: see text]) were initially generated using reference tissue manually defined on the cerebellar cortex. We then constructed a frequency histogram of [Formula: see text] values in these parametric images and selected cortical gray matter voxels contained in a certain range of the histogram with a low likelihood of having (11)C-PBB3 binding sites. Finally, these reference voxels were used for generating new [Formula: see text] parametric images. RESULTS Reference tissue voxels defined by the histogram analysis spread throughout the cortical gray matter of AD and HC brains. The [Formula: see text] values determined by our new method correlated very well with those estimated by the standard method (r (2) = 0.94), although the binding estimates by the current method were slightly higher by ~0.14 than those by the standard method. CONCLUSIONS We developed and validated a new method enabling quantification of tau lesions that can accumulate in the cerebellum and other extensive brain areas. This method may be applicable to all tauopathy subtypes and various tau PET ligands besides (11)C-PBB3. TRIAL REGISTRATION The number is UMIN000009052.
منابع مشابه
PET Quantification of Tau Pathology in Human Brain with 11C-PBB3.
UNLABELLED Tau accumulation in the brain is a pathologic hallmark of Alzheimer disease and other tauopathies. Quantitative visualization of tau pathology in humans can be a powerful method as a diagnostic aid and for monitoring potential therapeutic interventions. We established methods of PET quantification of tau pathology with (11)C-PBB3 (2-((1E,3E)-4-(6-((11)C-methylamino)pyridin-3-yl)buta-...
متن کاملCortical laminar binding of PET amyloid and tau tracers in Alzheimer disease.
UNLABELLED Neurofibrillary tau pathology and amyloid β (Aβ) plaques, characteristic lesions of Alzheimer disease (AD), show different neocortical laminar distributions. Neurofibrillary-tangle tau pathology tends to be closer to the gray matter-white matter boundary, whereas Aβ is dispersed throughout the width of the cortical ribbon. METHODS Using PET radiotracers for tau and Aβ lesions, we d...
متن کاملRadiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology.
UNLABELLED 2-((1E,3E)-4-(6-((11)C-methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ((11)C-PBB3) is a clinically useful PET probe that we developed for in vivo imaging of tau pathology in the human brain. To ensure the availability of this probe among multiple PET facilities, in the present study we established protocols for the radiosynthesis and quality control of (11)C-PBB3 and f...
متن کاملCortical Brain Surface Mapping for Studying Partial Volume Effects in Brain Fdg Pet Images
Objectives Due to the small thickness of cortical gray matter in the brain, biological interpretation of image values in the cortical regions on FDG PET images is confounded by tissue atrophy and partial volume effects, especially in patients with Alzheimer Disease (AD). In this study, we developed a method that employs a well established MRI-based cortical brain surface mapping technique to ac...
متن کاملConsiderations and code for partial volume correcting [18F]-AV-1451 tau PET data
[18F]-AV-1451 is a leading tracer used with positron emission tomography (PET) to quantify tau pathology. However, [18F]-AV-1451 shows "off target" or non-specific binding, which we define as binding of the tracer in unexpected areas unlikely to harbor aggregated tau based on autopsy literature [1]. Along with caudate, putamen, pallidum and thalamus non-specific binding [2], [3], we have found ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EJNMMI research
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2016